Gap junctions

https://www.sciencedirect.com/science/article/pii/S0022202X15331821

ELSEVIER

Journal of Investigative Dermatology Volume 127, Issue 11, November 2007, Pages 2516-2524

Perspective

Gap Junctions: Basic Structure and Function

Gülistan Meşe ¹, Gabriele Richard ², Thomas W. White ^{1, 3} $\stackrel{\circ}{\sim}$ \boxtimes

Table 1. Epidermal connexins and associated disorders

		OMIM		
Gene	Hereditary disease	reference	Expression pattern	
GJB4(Cx30.3)	Autosomal-dominant	1 332 00	Skin, kidney, and	
	erythrokeratodermia variabilis		placenta	
GJB3(Cx31)	Autosomal-dominant and	133200	Skin, cochlea, placenta,	
	-recessive erythrokeratodermia		kidney, testes, eye, and	
	variabilis		PNS	
	Autosomal-dominant and	600101		
	-recessive nonsyndromic			
	sensorineural hearing loss			
	(DFNA3)			
GJB2(Cx26)	Autosomal-recessive	220290		
	nonsyndromic sensorineural			
	hearing loss (DFNB1)			
	Autosomal-dominant	601544	Almost ubiquitous,	
	nonsyndromic sensorineural		including cochlea,	
	hearing loss (DFNA3)		skin, liver, placenta,	
			breast, lung, and brain	
	Vohwinkel syndrome	124500		
	Keratitis–ichthyosis–deafness	148210		

	Keratitis–ichthyosis–deafness syndrome	148210	
	Palmoplantar keratoderma associated with sensorineural hearing loss	148350	
	Bart–Pumphrey syndrome	149200	
GJB6(Cx30)	Autosomal-recessive nonsyndromic sensorineural hearing loss (DFNB1)	220290	
	Autosomal-dominant nonsyndromic sensorineural hearing loss (DFNA 3)	601544	Skin, brain, cochlea, and cornea
	Clouston syndrome (Hidrotic ectodermal dysplasia)	129500	
GJA1(Cx43)	Oculo–dento–digital dysplasia	164200	Ubiquitous, including skin, heart, eye, and brain

Figure 4. Expression pattern of <u>connexins</u> in the epidermis. At least nine connexin isoforms have been shown to be expressed during epidermal <u>morphogenesis</u> with distinct spatial and temporal expression pattern as well as some overlapping distribution. Cx43 is the most broadly expressed, whereas Cx26 is limited to basal <u>keratinocytes</u> in palms and soles, or occasionally cells in the granular layer. Cx40 is present throughout the spinous and granular layers, whereas the remaining six connexins are restricted to the upper spinous and granular layers.

LGI vs. MGI Escape

Edwards, D. (2017, May 24). Crayfish Escape. *Oxford Research Encyclopedia of Neuroscience*. Retrieved 4 Jan. 2021, from https://oxfordre.com/neuroscience/view/10.1093/acrefore/97 80190264086.001.0001/acrefore-9780190264086-e-158.

Probe	Molecular Weight	Number of - (C ₂ H ₄ O)- Unit	Concentration (w/w %) Used in Perfusion Solution	Hydrodynamic Diameter* (Å)
PEG 3500	3500	~79	10	~30
PEG 1000	1000	~22	5.5	17.8
PEG 600	600	~13	4.0	13.8
PEG 400	400	~8	3.1	11.2
PEG 300	300	~6	2.35	9.6
PEG 200	200	~4	1.86	8.0
TriEG	150	3	1.5	6.8
DiEG	106	2	1.06	5.8
EG	62	1	0.62	4.4

 TABLE 1
 The characteristics of polyethylene glycols as neutral probes

*The hydrodynamic diameters of PEGs were measured by size exclusion chromatography, including gel permeation chromatography (GPC), single-point method (equilibrium partitioning) and column method (inverse GPC) (Kuga 1981).

Where else are gap junctions used ? In humans ?

Given the important role of gap junctions in animal cells, you might wonder if they also exist in plant cells. However, gap junctions are absent in plant cells.

Plant cells contain channels called **plasmodesmata**. Edward Tangl first discovered these in 1885. Animal cells do not harbor any plasmodesmata per se, but scientists have discovered a similar channel that is not a gap junction. There are a number of structural differences between plasmodesmata and gap junctions.

(https://sciencing.com/difference-between-gap-junctions-plasmodesmata-8714824.html)

Crayfish:

"Increase in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration"

The data indicate that the increase in junctional resistance induced by acidification is more closely related to $[Ca^{2+}]_i$ than to $[H^+]_i$.

In conclusion, this study shows lack of a direct relationship between intracellular pH and channel gating in crayfish septate axons. In these cells intracellular acidification causes an increase in [Ca2+]i that closely matches a parallel increase in junctional resistance. This suggests that acidification may **close these gap junction channels via changes in internal free calcium**. Whether the same mechanism takes place in other cell systems remains to be proven.

Peracchia, C. Increase in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration. *J. Membrain Biol.* **113**, 75–92 (1990). https://doi-org.ezproxy.uky.edu/10.1007/BF01869608